
International Journal of Management, IT & Engineering
 Vol. 14 Issue 06, June 2024,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

92 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Strategy to Handle Large Tables in SAP S/4 HANA

Saurav Mago

 Abstract

 Database tables grow significantly over the period of time which can cause

significant performance issues. In this paper, we will discuss the ways to

handle large tables in SAP S/4HANA.

Keywords:

SAP.

SAP S/4HANA.

Data Archival.

Table Partitioning.

 Copyright © 2024 International Journals of Multidisciplinary Research

Academy. All rights reserved.

Author correspondence:

Saurav Mago,

ERP SAP Manager &

Technology Lead

Email:

saurav.mago@gmail.com

1. Introduction

There are two type of tables which SAP HANA database supports – Row-wise (Row Tables) & Column-

wise (Column Tables). As the name suggests, row tables store complete row of a table in an immediate

memory whereas column table stores entries of a particular column in an immediate memory. SAP HANA

database is optimized for column tables for faster read operations (due to data compression) with good

performance for write operations also. Column Tables are suitable for heavy table with write operations

whereas Row Tables are more suitable for small tables with frequent update/insert operations. Partitioning of

tables is only feasible for column tables.

There are scenarios where SAP tables grow significantly over the course of time and can cause

performance issues. Example: Characteristic (AUSP), IDOC (EDIDD), Finance (ACDOCA, BKPF, BSEG)

etc.

To control large tables, data archiving & partitioning techniques can be leveraged which is explained in

subsequent sections.

2. Partitioning of Large Tables

Partitioning breaks down a huge table into smaller parts which are easy to manage. There are multiple ways

to partition a table like Range Partition, Hash Partition & Round-robin partition. Depending upon the use-

case, analysis by database administration & system architect, we should finalise the type of partition to be

used as it requires downtime and repartition will be more difficult exercise.

Before we proceed on to learn about different types of partitioning, we should understand how read/write

operations typically happens in a column table. Column tables are optimized for read procedures and

provides good performance for write procedures. This is achieved via Main storage & Delta Storage.

 ISSN: 2249-0558 Impact Factor: 7.119

93 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 Main part of the data is stored in Main storage where data compression happens to save

memory and improve read performance

 Write operations on Main storage will be performance intensive hence avoided

 All changes to be written are stored in Delta Storage which is optimized for write operations

 All the data will be read from both the storage to get latest information

 All the changes are moved from Delta storage to Main storage which is called as Delta

Merge

 Once Delta Merge starts –

 All data from Delta1 is copied into Main1

 All write operations go into new delta storage i.e., Delta 2

 All read operations go from Delta1, Delta 2 & Main1

 Once Delta Merge is complete –

 Delta1 & Main1 is deleted

 Main1 is copied into Main2 which causes temporary increase in Memory & utilize

CPU resources. This potentially negative impact on performance can be mitigated by

splitting tables into smaller parts (partitions), which will allow each part to have its

own main & delta storage. Delta merge happens only for that partition which requires

it, and this ensures less data is merged & improves the performance

 Optimal compression happens in the Main storage

Delta Merge & Compression are ongoing activity for a column table. Once we perform the partition, each set

of partition will perform its own merge & compression with a smaller dataset thus enhancing the

performance

 ISSN: 2249-0558 Impact Factor: 7.119

94 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Types of Partition:

Hash Range Round Robin

Used to distribute records to

partitions equally for load balancing
Not suited for load

distribution
Used to distribute records to

partitions equally for load

balancing

Utilizes Hash algorithm for record

distribution
Used to distribute records to

partitions based on range

specified

Used to distribute data equally in a

rotation basis

No in-depth knowledge of actual

content of data
Requires in-depth knowledge

of actual content of data
No in-depth knowledge of actual

content of data

Columns must be specified as

partitioning columns
Columns must be specified as

partitioning columns
Does not require to specify

partitioning columns

Partitioning columns must be part of

key field of table
Partitioning columns must be

part of key field of table
Table must not have primary keys

Ex: CREATE COLUMN TABLE

ZTABLE_TEST (a INT, b INT, c

INT, d INT PRIMARY KEY (a,c))

PARTITION BY HASH (a)

PARTITIONS 4

Ex: CREATE COLUMN

TABLE ZTABLE_TEST (a

INT, b INT, c INT, d INT

PRIMARY KEY (a,c))

PARTITION BY RANGE (c)

(PARTITION 10 <=

VALUES < 50,

PARTITION 50 <= VALUES

< 200,

PARTITION OTHERS)

Ex: CREATE COLUMN TABLE

ZTABLE_TEST (a INT, b INT, c

INT d INT) PARTITION BY

ROUNDROBIN PARTITIONS 5

o Partitioning column can have data types as STRING, TINYINT, SMALLINT, INT,

BIGINT, DECIMAL, SHORTTEXT, VARCHAR, NVARCHAR, DATE, TIMESTAMP,

SECONDDATE, FIXED, RAW

o There can be scenarios where non-primary key columns need to be added as partitioning

columns. In such cases, multi-level partitioning can help which allows to select primary key

column as first level and non-primary column as second level. Hash-hash, hash-range,

range-range, round robin-range are such possible multi-level partitioning techniques.

Key Points for Partitioning:

 Each partition should have at least 100 million records.

 ISSN: 2249-0558 Impact Factor: 7.119

95 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 Memory use for each partition should not be more than 50GB at any given point of time else it will

cause delta merge issues.

 Any table (without partition) which has more than 2.14 billion records will lead to system crash.

 Repartition should be planned if any partition reaches 1.6 billion records.

 Repartition should be done as a multiple of existing partition. Ex: If current number of partitions are

16, then new partitions can be 16*2, 16*3 etc.

 To finalize the partition strategy, always analyze the ‘Where’ clause of all SQL statements on table

to be partitioned and try to look for common patter. Below query can be used to get the result:

 select statement_string, execution_count from m_sql_plan_cache where statement_string like

'%<Table Name>%' order by execution_count desc.

 SAP HANA supports 2 level of partition only (first level & second level)

 One table can have maximum of 1000 (SPS <= 09) or 16000 (SPS >= 10) partitions

 HANA parameters should be adjusted based on number of partitions. Ex: If number of partitions are

60 then system will utilize 1 CPU thread for each partition, hence statement concurrency limit

should be adjusted to support partitions else system will be slow due to resource unavailability

Tuning HANA Parameters:

 HANA parameters play a key role in performance tuning of the system. There are couple of parameters

which are linked to table partitioning (delta merge, compressions etc.) so we will discuss a few important

parameters here. During application usage by SAP users, there can be performance issues which leads to the

system being unresponsive or out of memory dump issues. SAP HANA environments might have resource

bottlenecks due to limitations of CPU/threads (Number of physical/logical CPU), memory (Physical

memory), or network (bandwidth & latency). SAP HANA operations like Delta Merge, Compression can

interfere with the heavy volume application activities and degrade the performance. Hence, in addition to

Application Team performing the analysis, HANA Database administrator should monitor & validate below

Parameters settings:

1. default_statement_concurrency_limit:

 SAP HANA tasks like executing of SQL statements or background tasks is performed by

threads.

 This parameter decides the number of CPU threads that can be used for a database request &

causes high CPU utilization if not maintained properly.

 Recommended value is MIN (10 %, 8) - 50 % of available CPU threads.

 CPU Consumption can be checked via SAP HANA Studio -> Administration -> Overview -

> CPU Usage

 Changes to this parameter is reflected at once; no restart required.

2. statement_memory_limit

 It decides the maximum memory consumption for a single SQL statement & causes out of

memory (OOM) issues if limit is breached.

 Changes to this parameter is reflected at once; no restart required.

 Recommended value is MIN (10 % of allocation limit, 30 GB) - MIN (30 % of allocation

limit, 500 GB)

3. row_order_optimizer_threads:

 This parameter controls the number of parallel threads during optimize compression runs.

 Available as of SAP HANA Rev. 1.00.112.02

 Recommended value is MAX (4, CPU threads / 10) as lower limit for SAP HANA >=

2.00.030

4. max_concurrency

 ISSN: 2249-0558 Impact Factor: 7.119

96 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 It decides total number of CPU threads that can be used by parallelized requests (values

below 50% only required in rare cases)

 Recommended value is 33-100 % of available CPU threads.

5. max_concurrency_hint

 Maximum number of CPU threads that can be used by a single parallelized operation,

optimal setting is individual.

 This is identical to num_cores parameter.

 Recommended value is MIN (10 %, 8) - 50 % of available CPU threads.

Overall, it is of high importance that parameters for SAP HANA and other involved system components are

set according to the best practices.

3. Archiving of Large Tables:

Data Archival simply moves the data from the high-performance, costlier HANA database to a disk-

based storage environment which is more cost effective. The archived data can still be read until purged.

Data is archived using archiving objects, which describe the data structure and context. The Archive

Development Kit (ADK) is the technical framework which provides all the tools for the SAP data

archiving solution. It forms an interface between applications, database, and the place where archived

data is stored.

Benefits:

 Deleting the old/historical data as per the compliance and policy leads to reduction in

footprint within the database & improves the system performance.

 Archival helps to move the data from High-cost environment to the low-cost secondary

database (example: SAP IQ)

 Archived data can be accessed using some of the SAP standard reports which are

provisioned to pull the data from the Archived database (example: SAP IQ)

Steps for Archiving:

Before we start with Archiving, the first step is to identify large tables in terms of memory size via SAP

Transaction DB02. Once huge tables are identified, SAP Transaction DB15 is used to identify relevant

Archive Objects for those tables. There are multiple steps to achieve Archival:

1. Preprocessing (Optional)

At this step, system prepares the data for archival and makes a deletion indicator. No data is

removed at this step.

2. Write

System selects the chosen records, creates new archive file & writes the records into the archive file.

No data is removed yet from database.

3. Delete

At this step, system reads the data from the archived files and removes the data from the database.

4. Post processing:

It also runs on the Database and does not require any Archive files. If the data is not removed via

Delete step, then it can be deleted via post processing program.

SAP ILM:

 SAP Information Lifecycle Management (SAP ILM) enhances the SAP standard delivery with the

ability to manage the lifecycle of live and archived data based on rules.

 ISSN: 2249-0558 Impact Factor: 7.119

97 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 SAP ILM helps to manage information through its lifecycle while balancing cost, risk, and

compliance. It mitigates business risk with compliant data archiving and retention by streamlining

IT infrastructure and protecting the privacy rights of data with the SAP ILM.

 In SAP ILM, time-based data lifecycle management is performed with the help of rules that you

define in the context of policies.

o Residence Period: Data can only be archived after residence period is completed. Hence,

data stays in HANA database until this period has expired.

o Retention Period: Data cannot be destroyed/removed until this period has expired.

SAP IQ:

 SAP IQ is a column-based, petabyte scale, relational database software system; produced by Sybase

Inc., now an SAP company.

 SAP IQ (Sybase IQ) is a high-performance decision support server designed specifically for data

warehousing. This cross-platform product runs on several popular Unix, Linux, and Windows

platforms.

Key Points for Archiving:

 We cannot change archived data.

 SAP IQ is secondary database which acts as a cold storage and provides read access to archived data

on need-basis; Data stored in IQ is compressed.

 SAP does not recommend using same IQ instance for multiple SAP environments like SAP

S4HANA & SAP BW4HANA (owing to backups & performance concerns)

 Recovery of archived data back into respective SAP database tables is possible using reload

programs but it should be used in case of emergency only as it may cause inconsistency if there is

change in configuration.

 SAP has delivered out-of-the box functionality to read the archived data for critical transactions. In

case there is no choice, then custom enhancement will be required to enable it.

4. Conclusion

Data Archival and Partitioning of large tables can significantly reduce the issues caused by high number of

records in a database tables.

References
[1] Roland Kramer article- "SAP ILM with SAP IQ Database” published on SAP Community

[2] SAP ILM Overview on sap.com/products

[3] SAP Notes related to SAP HANA CPU, Parameters & Delta Merge operations from SAP Service Portal

Knowledge base - Note 2100040, Note 2186744, Note 2057046.

[4] Table Partitioning, SAP HANA Docs, SAP Help at: help.sap.com/docs/hana-cloud-database

https://community.sap.com/t5/technology-blogs-by-members/sap-ilm-with-sap-iq-database/ba-p/13483737
https://community.sap.com/t5/technology-blogs-by-members/sap-ilm-with-sap-iq-database/ba-p/13483737
https://community.sap.com/t5/technology-blogs-by-members/sap-ilm-with-sap-iq-database/ba-p/13483737
https://community.sap.com/t5/technology-blogs-by-members/sap-ilm-with-sap-iq-database/ba-p/13483737
https://community.sap.com/t5/technology-blogs-by-members/sap-ilm-with-sap-iq-database/ba-p/13483737
https://www.sap.com/products/technology-platform/information-lifecycle-management.html
https://www.sap.com/products/technology-platform/information-lifecycle-management.html
https://www.sap.com/products/technology-platform/information-lifecycle-management.html
https://www.sap.com/products/technology-platform/information-lifecycle-management.html
https://www.sap.com/products/technology-platform/information-lifecycle-management.html
https://www.sap.com/products/technology-platform/information-lifecycle-management.html
https://www.sap.com/products/technology-platform/information-lifecycle-management.html
https://www.sap.com/products/technology-platform/information-lifecycle-management.html
https://me.sap.com/notes/2100040
https://me.sap.com/notes/2100040
https://me.sap.com/notes/2100040
https://me.sap.com/notes/2186744
https://me.sap.com/notes/2186744
https://me.sap.com/notes/2186744
https://me.sap.com/notes/2057046
https://me.sap.com/notes/2057046
https://me.sap.com/notes/2057046
https://me.sap.com/notes/2057046
https://me.sap.com/notes/2057046
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning
https://help.sap.com/docs/hana-cloud-database/sap-hana-cloud-saphana-database-administration-guide/table-partitioning

